
The Postulates of Quantum Mechanics
The Postulates of QM
-QM is based on 6 postulates
-Postulates can’t be proved; validity can be tested by experiments
-No violation of the postulates has been found in the ~70 years since their 

formulation.
Quantum mechanics is a highly successful theory providing us with 
insight into the world of atoms and molecules. Its foundations are a set 
of postulates, which we state and comment on below. The only 
justification for them is quite simply that they work. In order to 
understand and do quantum mechanical computations and make 
interpretations, some level of mastery of these postulates is essential. 
The main objectives of this dry lab (computing) is to have you use the 
postulates to set up quantum mechanical equations for physical systems 
and to examine the properties of operators. Interpretation of quantum 
theory is another matter. Indeed, there are a number of interpretations, 
but none appear to be completely. The so-called ‘Copenhagen 
interpretation’ - quantum theory is a probabilistic theory and there is no 
deep reality - is widely used, but is not without its flaws. Probabilities 
enter into our discussion of wave functions and they are mentioned in 
comments of Postulate 1, but otherwise interpretations are not important 
in this course.



Definition : To begin, assume a 3-dimensional Cartesian coordinate system and 
denote the coordinates of a point by the 3-tuple of numbers (x,y,z). We shall use 
the notation
r = (x,y,z). The symbol r also denotes the vector
r = xe1 + ye2 +ze3 Such a coordinate system is referred to as configuration 
space.
Postulate 1. (1st postulate addresses the meaning of Ψ(x,t). The state of a 
quantum system is described by a function, Ψ(x,y,z,t) or Ψ(r,t) of the configuration 
space variables and time. This function is referred to as the state function or as 
the wave function. It contains all the information that can be determined about the 
system. Furthermore, we require that Ψ(x,y,z,t) be single-valued, continuous, 
differentiable to all orders, and quadratically integrable, i.e.
I-(a) The state of a dynamical particle cab be describe by a wave function Ψ which 
is a function of coordinates and time , i.e. Ψ(x,y,z,t) 
(b) If the function Ψ describes the state of a particle, then the quantity Ψ*Ψdτ gives 
the probability of finding the particle in the volume element dτ at some specific 
coordinates and time t. This is the born of interpretation of the wave function. 
If Ψ included the time explicitly, it is called a time-dependent wave function but if 
the desirable properties of the system do not change with time (stationary state 
system), Ψ will be time-independent.



Part (b) of the postulate which gives a physical interpretation of Ψ as a 
probability function necessitate that Ψ:

1- Must be every where finite.
2- Must be single valued.
3- Must have an integrable squares
More about Ψ(x,t)
-All Knowable about system contained in Ψ(x,t)
-Tie to physical reality is Ψ*(x0,t0) Ψ(x0,t0)
-Magnitude of Ψ(x,t) always >0
-Two Ψ(x,t) of same magnitude not distinguishable
-Link to probability means that  

This is the normalization condition. 
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Condition on Ψ(x,t)
Ψ(x,t) must be single valued 
Otherwise two different probability for x

(α) Ψ is triple valued at x0. (b) Ψ is discontinuous at x0. (c) Ψ grows without 
limit at x approaches +∞ (i.e.  Ψ “blows up,” or “explodes” .  (d) Ψ is 
continuous and has a “cusp” at x0. Hence, first derivative of Ψ is 
discontinuous at x0 and is only piecewise continuous. This does not 
prevent Ψ from being acceptable.     



In order for HΨ to be defined everywhere, it is necessary that the second 
derivative of Ψ be defined everywhere. This requires that the first 
derivative of Ψ be piecewise continuous and that Ψ Itself  be continuous. 
(We shall see an example of this shortly.)       

Functions that are single-valued, continuous, nowhere infinite, and have
piecewise continuous first derivatives will be referred to as acceptable functions.

The meanings of these terms are illustrated by some sample functions above 
namely (a) , (b), (c) and (d).

In most cases, there is one more general restriction we place on Y namely, that
it be a normalizable function. This means that the integral of         over all space 
must not be equal to zero or infinity. A function satisfying this condition is said 
to be square-integrable.
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The restriction of integrable squares arises from the 
requirement that the probability of finding the particle in 
all space must be finite. A special case in when 

which means that 

The probability of finding the particle in all space is 1 such 
a wave function is said to be normalized All wave 
functions have to be normalized.

Postulate II Every observable property of a system has a 
linear Hermitain operator. The Hermitian property of  the 
operator ensure that the calculated values of the 
observable will always be real. The following procedure 
is followed to obtain the operator of any observable.   

1* =ΨΨ∫ τd
allspace



i.e. Postulate 2: stated that for every measurable property of the system 
in classical mechanics such as position, momentum and energy, 
there exists a corresponding operator in quantum mechanics. An 
experiment in the laboratory to measure a value for such an 
observable is simulated in the theory by operating on the wave 
function of the system with the corresponding operator. 

1- The classical expression for te observable is written in thus of 
coordinate, momentum and time.

2- time and all coordinates are left as they are.
3- Momentum , pq are replaced by the differential operator where q 

represents a general coordinate e.g. x,y,z , r,θ,φ.
Example-1 Find the operator for the kinetic energy?
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Laplacian called isoperator energy  Kinetic 
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The Del squared ∇2 (3D) is the laplacian.

So, to Constructing operators
The steps are:

1.Write out the classical expression in terms of r (x,y,z)and p.
2.Replace r and p with the operators.

m
zpypxpTD

dx
d

mm
xpTxD

2
3

22
1

222

2

222

++
==

−===
h

( )

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
++→

→

dz
d

dy
d

dx
d

i
p

rr

h

rby multiply  



The potential energy operator V
The potential energy will depend on the specifics of a given system. 
As an example, consider an electron in the field of an atomic nucleus of charge 
Z. The potential energy then comes from the Coulomb potential:

r
ZerV

04
2)(

πε
−=

Where –e is the charge on an electron (or +e for a proton), and r is the 
separation distance, which is a function of x,y,z.

Example 2- Write down the Hamiltonian which is the operator of total 
energy of a system?



Total Energy H is equal the sum of Kinetic   energy T, and the potential energy 
V 

For a conservative system i.e. a system where T+V remains constant with time.
Because the operator of the kinetic energy was derived previously, the potential 

energy V is a function of coordinates only therefore it remains as it is:
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The total energy operator, H
The total energy is the sum of the kinetic and potential energy:

H =T + V
The Hamiltonian            
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For an electron moving in a coulomb potential with Z=1 the Hamiltonian is

r
e

m
H

0

2
2

2

42 πε
−∇

−
=

h


