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Other important quantum mechanics operator are: 

Postulate III and IV:
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3rd postulate relates results of measurement and eigenvalues of 
operators.
Postulate 3: In any single measurement of the observable that 
corresponds to the operator Â the only values that will ever be 
measured are the eigenvalues of that operator.
Example: Total energy of H atom determined by orbital occupied. No 
other values possible.
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Thus If Û is an operator corresponding to an observable and Ψ is an 
eigenfunction of the operator Û , then the eigenvalue of the equation

Û Ψ =a Ψ will be the value of the observable.
The calculation of allowed energies of an atomic and molecular 

systems is a direct application of this postulate. It involves finding 
the wavefunction Ψ and eigenvalue E which satisfy Schrödinger 
equation:
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Application of the postulate to a simple system:
The particle in a box:

Consider a particle of a mass m constrained to move in one direction 
(along the X-axis) inside a box of length a. Assume the potential energy V 

inside the box to be zero and outside the box to be infinity, i.e. no 
chance for the particle to go outside the box.

The observable we want to calculate is the energy of the particle. We use 
the Hamiltonian which is the total energy operator and solve the
Schrödinger equation. 
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This is a second order differential equation whose 
Solutions are functions that when differentiated twice
Will give the same function back multiplied by a
constant.  Based upon the previous discussed topics 
Concerning the type of functions (finding the 
eigenfunction and eigenvalue equations). Therefore,
the second order differentiated equation perhaps of 
the type en ,  sin(n) or cos(n). A very general solution 
is:
Ψ= Asinαx + Bcosαx
Where A, B and α are constants.
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If we differentiate Ψ twice , we get:

Now we apply the boundary conditions:
• At the edge of the box, i.e. at X=0 and X=a the value of  Ψ=0. This is 

the result of the requirement that must be single value, because just 
outside the box Ψ=0). Therefore, when we consider a particle trapped 
in a 1D-box bouncing back and forth between the walls. Since there is 
zero probability of finding the particle outside, ψ(x)=0 outside the box; 
and since the wave-function must be continuous, ψ(x)=0 at the walls 
too.
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The general solution was:
Ψ= Asinαx + Bcosαx
(i) Substituting x=0 in the above equation of Ψ we get: 
Ψ= Asinα(0) + Bcosα(0)
Ψ= 0 + B
∴For Ψ to be zero at x=0, B must  be zero
∴ Ψ =Asinαx only
(ii) Substituting x=a we get:   Ψ =Asinαa
For Ψ to be zero at x=a, αa must be equal to nπ where n is an integer.
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Thus the position of boundary conditions
leads to discrete values of energy.
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To complete the solution, we must normalize the wavefunction .The normalize 

condition in the case is:

And so the allowed wavefunctions and energies for a particle in one-
dimensional (1-D) box are: 

Units: h in Js,  m in Kg , a in m, E in Joules (system I.N)
h in ergs, mass in g, a in cm,   E in ergs
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Schematic drawing of En , Ψn and  Ψn
2 for the case of a particle moving in 1-D 

box. Note that Ψn changes sign at each node while Ψn
2 always remains 

positive or zero. Also note that the energy spacing between levels diverges 
as n increase. 

Features of the solution:
1- Quantization of energy levels arise from the constrained of the motion of the 

particle to a certain region of space i.e. to boundary conditions.
2- For the same value of the quantum number n , the energy is inversely 

proportional to the mass of the particle and the length of the box. As n and a 
become large energy levels become more closely spaced.      
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Thus, as the particle becomes heavier and the box larger, the energy 
levels become more closely spaced. It is only when the quantity ma2

is of the same order as h2 that quantized energy levels become 
important in experimental measurements. When dealing with 
dimension of 1g and 1cm, the energy levels become so closely 
spaced that they seem to us to be continuous. The quantum 
mechanical formula, therefore, gives the classical result for systems 
with dimensions such that ma2 >>h2. This is an illustration of the 
“correspondence principle” that states that the quantum 
mechanical results must become identical with the classical one in 
the limit where the quantum numbers describing the system become
very large.

3- As the energy increasing the number of nodes increases, a node is a 
point where the value of Ψ is zero, excluding the edges. 

Number of Nodes = n-1 
The greater the number of nodes, the shorter is the wavelength and 

therefore the larger is the energy and momentum.     
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Problem1: What is the separation between energy levels n=2 and n=1 
for electron in the box of length L=10 cm?    ∆E21≅ 10-16 eV (tiny)

Problem2: What is the separation between energy levels n=2 and n=1 
for electron in the box with length L=1Å?  ∆E21≅ 100 eV
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Examples:
1. A proton is confined to move in a one-dimensional box of length 

0.200 nm .(a) Find the lowest possible energy of the proton. (b)
What If? What is the lowest possible energy of an electron confined 
to the same box? (c) How do you account for the great difference in 
your results for (a) and (b)?
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What you should learn from this lecture
1. For the particle in a box You should remember the dependence of 

the energy on the quantum number n and the box length l. You 
should also note the lower limit (n = 1) for n and the consequence 
it has for the minimum energy (zero point energy).

2 You should also know roughly the form of the state functions Ψn
Especially, you should note that Ψn nodes.

Particle in a Box Simple model of molecular energy levels.

Anthracene molecule
π electrons – consider “free” in box of length L.
Ignore all coulomb interactions. Calculate 
wavelength of absorption of light. Form particle in 
box energy level formula.
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Anthracene particularly good agreement. Other molecules, 
naphthalene, benzene, agreement much worse. Important point
Confine a particle with “size” of electron to box size of a molecule
Get energy level separation, light absorption, in visible and UV.
Molecular structure, realistic potential give accurate calculation, but
It is the mass and size alone that set scale.

Big molecules                   absorb in red.
Small molecules                 absorb in UV.
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Postulate V:     (expectation value)
If Û is an operator corresponding to an observable andΨ is a function 

describing the system. Furthermore if Ψ is not an eigenfunction of Û
then a series of measurements of the observable will not give the 
same results but a distribution of results. The average or mean or 
“expectation value” of the observable will be given by:

Where <P> is the expectation value of the observable. 
Ex1: Calculate the momentum along the x-axis for the particle in a box. 

It is required to calculate Px and therefore the operator to be used is
For the particle in a box Ψ is

It is clear that is not an eigenfunction of the momentum operator. So we 
can only calculate the mean or expectation value of Px
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